Starch-Sulfuric Acid (SSA) as Catalyst for a One-Pot Synthesis of 1,5-Diaryl-1H-pyrazoles

by Farhad Hatamjafari

Department of Chemistry, Faculty of Science, Islamic Azad University-Tonekabon Branch, Tonekabon, Iran (e-mail: hatamjafari@yahoo.com)

Protocols with starch–sulfuric acid (SSA) as reusable catalyst for the synthesis of aryl-1H-pyrazoles are described. SSA acted as an efficient and environmentally friendly catalyst for the regioselective condensation of *Baylis–Hillman* adducts 1 with phenylhydrazine hydrochloride leading to the new 1,5diaryl-1H-pyrazole 2a-2e in excellent yields (Scheme and Table 1).

Introduction. – Starch–sulfuric acid (SSA) is one of the cheap and heterogeneous biopolymer catalysts, that we designed and used in the synthesis of aryl-1H-pyrazoles. It can be easily separated, reused, and does not pollute the environment. Cellulosesulfuric acid has been used previously as catalyst $[4-7]$. Aryl-1H-pyrazole derivatives belong to an important class of compounds exhibiting a wide range of biological activities as pharmaceuticals, agrochemicals, anti-inflammatories, antivirals, and antibacterials $[8-13]$. As part of our ongoing research on heterocyclic compounds containing N-atom [14], we report herein starch-sulfuric acid (SSA) as a new catalyst for the one-pot synthesis of 1,5-diaryl-1H-pyrazole derivatives 2 by condensation of Baylis–Hillman adducts 1 and phenylhydrazine (Scheme).

Scheme Condensation of Baylis–Hillman Adducts 1 and Phenylhydrazine

Results and Discussion. – The *Baylis–Hillman* adducts 1 were prepared by the reaction of methyl or ethyl vinyl ketone and benzaldehydes [15]. For the synthesis of the 1,5-diaryl-1H-pyrazole derivatives 2, the reaction of a Baylis–Hillman adduct 1 and phenylhydrazine hydrochloride in 1,2-dicloroethane was used (Scheme). The reactions were complete after almost 1 h at 80° on starch–sulfuric acid (SSA) as solid support and gave $2a - 2e$ in yields $> 90\%$ (Table 1).

Table 2 shows the optimization for the synthesis of 3-ethyl-4-methyl-5-(2-nitrophenyl)-1-phenyl-1H-pyrazole $(2b)$ from 1b. Surprisingly, a significant improvement was observed and the yield of 2b substantially increased to 97% after stirring; the

^{© 2013} Verlag Helvetica Chimica Acta AG, Zürich

Entry		Ar	Product	Yield $[\%]$
	Me	Ph	2a	91
	Et	$2-O_2N-C_6H_4$	2 _b	97
	Et	$4-O_2N-C_6H_4$	2c	95
	Et	3 -Cl-C ₆ H ₄	2d	93
	Et	4 -Cl-C ₆ H ₄	2e	90

Table 1. *Three-Component Synthesis of Some 1,5-Diaryl-1*H-pyrazoles 2 from Baylis–Hillman *Adducts* 1^a

^a) Conditions: 1 (1 mmol), phenylhydrazine hydrochloride (1 mmol), and SSA (0.05 g) in 1,2dichloroethane (5 ml), at 80° for ca. 1 h.

mixture was stirred for only 1 h (*Table 1, Entry 2*). With this optimistic result in hand, we investigated the best reaction conditions by using different amounts of SSA (0.05 g of SSA was sufficient to catalyze the reaction effectively, Table 2) and solvents such as H2O, MeOH, EtOH, MeCN, THF, and 1,2-dichloroethane. Only the latter gave excellent yields of 2b. We also tested the reaction at different temperatures and established that the best temperature was 80° .

Table 2. Optimizing the Reaction Conditions for $2b^a$)

SSA [g]	Time $[h]$	Yield $[\%]$
0.00		45
$\begin{array}{c} 0.02 \\ 0.05 \end{array}$		85
		91
	∠	76
$\begin{array}{c} 0.10 \\ 0.12 \end{array}$		69

^a) Conditions: **1b** (1 mmol) and phenylhydrazine hydrochloride (1 mmol) in 1,2-dichloroethane (5 ml) at 80°.

Conclusions. – We demonstrated the efficiency of starch-sulfuric acid (SSA) as catalyst for the synthesis of 1,5-diaryl-1H-pyrazoles 2 from *Baylis–Hillman* adducts 1 and phenylhydrazine hydrochloride in 1,2-dicloroethane giving good to excellent yields. SSA is superior to previously reported heterogeneous catalysts in view of its recovery, efficiency, nontoxicity, cheapness, and environmentally friendly behavior: It gives high yields and is reusable and, therefore, ideal for industrial applications.

We gratefully acknowledge the financial support from the Research Council of Tonekabon Branch Islamic Azad University.

Experimental Part

General. All chemicals were obtained from Merck or Fluka and used without further purification. TLC: silica gel SILG/UV 254 plates. IR Spectra: Shimadzu-IR-470 spectrophotometer; $\tilde{\nu}$ in cm⁻¹. ¹H- and ¹³C-NMR Spectra: *Bruker-500-DRX-Avance* instrument; at 500 and 125 MHz, resp.; δ in ppm rel. to Me₄Si as internal standard, J in Hz. MS: Finnigan-MAT 8430 mass spectrometer; ionization potential 70 eV; in m/z. Element analyses (C, H, N): Carlo-Erba-EA-1108 analyzer carried out with a Perkin-Elmer-240c analyzer.

Starch–Sulfuric Acid (SSA). To a magnetically stirred mixture of starch (1.0 g) in CH₂Cl₂ (20 ml), chlorosulfuric acid (ClSO₃H; 0.2 g, 1.8 mmol) was added dropwise at 0 $^{\circ}$ during 30 min, while HCl gas was removed from the reaction vessel immediately. After the addition was complete, the mixture was stirred for 2 h at 0° . The mixture was then filtered, washed with EtOH (30 ml), and dried at r.t.: starch–sulfuric acid. White powder.

Compounds $2a-2e$: General Procedure. A mixture of SSA $(0.05 g)$, Baylis-Hillman adduct 1 (1 mmol), and phenylhydrazine hydrochloride (1 mmol) in 1,2-dichloroethane (5 ml) was heated at 80° until the reaction was complete (ca. 1 h; TLC monitoring). The mixture was diluted with CH_2Cl_2 and washed with H₂O, the org. layer dried $(MgSO₄)$, the solvent evaporated, and the residue purified by column chromatography (silica gel; hexane/AcOEt 8:2): $1H$ -pyrazoles $2a - 2e$.

3,4-Dimethyl-1,5-diphenyl-1H-pyrazole (2a): Orange oil. IR: 3056, 2974, 1603, 1593, 1495. ¹H-NMR $(500 \text{ MHz}, \text{CDCl}_3)$: 1.36 $(t, J = 7.6, 3 \text{ H})$; 1.94 $(s, 3 \text{ H})$; 2.75 $(q, J = 7.6, 2 \text{ H})$; 7.21 – 7.26 $(m, 5 \text{ H})$; 7.34 $(dd,$ $J = 7.6, 1.4, 1 \text{ H}$; 7.55 (dt, $J = 8.1, 1.4, 1 \text{ H}$); 7.62 (dt, $J = 7.5, 1.3, 1 \text{ H}$); 7.98 (dd, $J = 8.1, 1.2, 1 \text{ H}$). ¹³C-NMR (125 MHz, CDCl3): 154.4; 149.6; 140.2; 136.1; 133.5; 133.4; 130.0; 129.3; 127.2; 126.7; 125.0; 124.5; 115.3; 20.6; 13.8; 8.5. MS: 248 (M^+). Anal. calc. for C₁₇H₁₆N₂: C 82.22, H 6.49, N 11.28; found: C 82.04, H 6.35, N 11.20.

3-Ethyl-4-methyl-5-(2-nitrophenyl)-1-phenyl-1H-pyrazole (2b): Orange oil. IR: 3052, 2970, 2965, 2920, 1607, 1552, 1487, 1351, 1455, 900, 750. ¹H-NMR (500 MHz, CDCl₃): 1.38 (t, J = 7.5, 3 H); 1.95 (s, 3 H); $2.70 \text{ (}a, J = 7.5, 2 \text{ H}$); $7.20 - 7.26 \text{ (}m, 5 \text{ H}$); $7.33 \text{ (}dd, J = 7.5, 1.5, 1 \text{ H})$; $7.58 \text{ (}dt, J = 8.5, 1.5, 1 \text{ H})$; 7.65 $(dt, J = 7.5, 1.3, 1 \text{ H})$; 8.00 $(dd, J = 8.5, 1.3, 1 \text{ H})$. ¹³C-NMR (125 MHz, CDCl₃): 156.4; 148.2; 141.2; 135.7; 132.2; 135.5; 132.0; 129.7; 128.0; 127.4; 125.5; 124.5; 116.8; 21.8; 14.2; 8.8. MS: 307 (M⁺). Anal. calc. for $C_{18}H_{17}N_3O_2$: C 70.34, H 5.58, N 13.67; found: C 70.25, H 5.48, N 13.53.

3-Ethyl-4-methyl-5-(4-nitrophenyl)-1-phenyl-1H-pyrazole (2c): Orange oil. IR: 3055, 2972, 2920, $2821, 1590, 1456, 1519, 1340, 750.$ 1 H-NMR (500 MHz, CDCl₃): 1.34 (t, J = 7.2, 3 H); 2.12 (s, 3 H); 2.79 (q, $J = 7.2, 2 \text{ H}$); 7.20 $(dd, J = 8.5, 1.3, 2 \text{ H}$); 7.30 – 7.38 $(m, 3 \text{ H})$; 7.40 $(d, J = 8.5, 2 \text{ H})$; 8.30 $(d, J = 8.5, 2 \text{ H})$. ¹³C-NMR (125 MHz, CDCl₃): 158.0; 148.0; 143.5; 140.8; 135.5; 132.1; 129.2; 128.8; 127.0; 125.9; 120.2; 23.8; 14.5; 8.9. MS: 307 (M^+) . Anal. calc. for C₁₈H₁₇N₃O₂: C 70.34, H 5.58, N 13.67; found: C 70.18, H 5.42, N 13.56.

5-(3-Chlorophenyl)-3-ethyl-4-methyl-1-phenyl-1H-pyrazole (2d): Orange oil. IR: 3054, 2962, 2855, $1590, 1568, 1490, 1055, 920, 850, 747, 690.$ $H\text{-NMR}$ (500 MHz, CDCl₃): 1.41 $(t, J = 7.5, 3 \text{ H})$; 2.40 $(s, 3 \text{ H})$; $2.90 (q, J = 7.5, 2 H)$; 7.30 $(dt, J = 7.5, 1.2, 1 H)$; 7.25 – 7.35 $(m, 8 H)$. ¹³C-NMR (125 MHz, CDCl₃): 158.0; 144.1; 142.2; 137.7; 138.8; 135.5; 132.1; 129.5; 128.8; 128.1; 127.1; 126.0; 115.6; 21.1; 13.5; 9.1. MS: 296 (M^+) . Anal. calc. for C₁₈H₁₇ClN₂: C 72.84, H 5.77, N 9.44; found: C 72.69, H 5.61, N 9.35.

5-(4-Chlorophenyl)-3-ethyl-4-methyl-1-phenyl-1H-pyrazole (2e): Orange oil. IR: 3055, 2964, 2916, 2873, 1605, 1509, 1455, 1732, 763. ¹H-NMR (500 MHz, CDCl₃): 1.38 (t, J = 7.5, 3 H); 2.13 (s, 3 H); 2.81 (q, $J = 7.5$, 2 H); 7.14 (d, $J = 7.0$, 2 H); 7.20 – 7.26 (m, 3 H); 7.31 (m, 2 H); 7.35 (d, $J = 7.0$, 2 H). ¹³C-NMR (125 MHz, CDCl3): 158.5; 152.3; 145.4; 138.3; 135.6; 131.4; 128.3; 126.5; 125.5; 124.8; 118.5; 21.0; 13.1; 9.0. MS: 296 (M^+). Anal. calc. for C₁₈H₁₇ClN₂: C 72.84, H 5.77, N 9.44; found: C 72.78, H 5.66, N 9.29.

REFERENCES

- [1] P. T. Anastas, J. C. Warner, 'Green Chemistry: Theory and Practice', Oxford University Press, Oxford, UK, 1998; P. T. Anastas, T. Williamson, Green Chemistry, Frontiers in Benign Chemical Synthesis and Process', Oxford University Press, Oxford, UK, 1998.
- [2] T. Hiedo, Jpn. Tokkyo Koho JP. 56005480, 1981 (Chem. Abstr. 1981, 95, 80922b).
- [3] J. P. Poupelin, G. Saint-Ruf, O. Foussard-Blanpin, G. Narcisse, G. Uchida-Ernouf, R. Lacroix, Eur. J. Med. Chem. 1978, 13, 67.
- [4] A. Shaabani, A. Rahmati, Z. Badri, Catal. Commun. 2008, 9, 13.
- [5] H. A. Oskooie, L. Tahershamsi, M. M. Heravi, B. Baghernejad, E-J. Chem. 2010, 7, 717.
- [6] E. Mosaddegh, A. Hassankhani, A. Baghizadehb, J. Chil. Chem. Soc. 2010, 4, 419.

HELVETICA CHIMICA ACTA – Vol. 96 (2013) 1563

- [7] J. Safari, S. H. Banitaba, S. D. Khalili, J. Mol. Catal. A: Chem. 2011, 335, 46.
- [8] K. Y. Lee, G. Gowrishankar, J. N. Kim, *Tetrahedron Lett.* **2005**, 46, 5387.
- [9] N. Haddad, A. Salvagno, C. Busacca, Tetrahedron Lett. 2004, 45, 5935.
- [10] J. W. Lyga, R. M. Patera, M. J. Plummer, B. P. Halling, D. A. Yuhas, Pestic. Sci. 1994, 42, 29.
- [11] S. Cacchi, G. Fabrizi, A. Carangio, Synlett 1997, 959.
- [12] K. Y. Lee, J. M. Kim, J. N. Kim, Tetrahedron Lett. 2003, 44, 6737.
- [13] Y. R. Huang, J. A. Katzenellenbogen, Org. Lett. 2000, 2, 2833.
- [14] N. P. Peet, E. W. Huber, J. C. Huffman, J. Heterocycl. Chem. 1995, 32, 33.
- [15] M. Shi, J. K. Jiang, C. Q. Li, Tetrahedron Lett. 2002, 43, 127.

Received November 23, 2012